'3

[ICASE

OPTIMAL ASSIGNMENTS IN DUAL-PROCESSOR DISTRIBUTED

SYSTEMS UNDER VARYING LOAD CONDITIONS

Shahid Bokhari
(NASA-CR-155759) GPTIMAL ASSIGNMENTS [N
DUAL-PROCESSLR DISTRIRUTED SYSTEMS NDER
VARYING LOAD CUNUITIONS (ICASE) 41 p

DL/ 50

Report Number 79-14
July 5, 1979

NFIO~-TN164

unclas
0224315

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING

NASA Langley Research Center, Hampton, Virginia

Opefated by the

UNIVERSITIES SPACE o\ RESEARCH ASSOCIATION

OPTIMAL ASSIGNMENTS IN DUAL-PROCESSOR DISTRIBUTED SYSTEMS
UNDER VARYING LOAD CONDITIONS

Shahid H. Bokhari
Institute for Computer Applications in Science and Engineering

ABSTRACT

In dual-processor systems the optimal assignment of the modules of
a distributed program over the two processors may be found using a net-
work flow algorithm. The optimal assignment is sensitive to the loads
on the two processors and is not usually feasible to recompute each time
the loads change.

We address the problem of computing all optimal assignments for all
possible load values in advance of actual execution of the distributed
program. A mathematical model is developed wherein the situation is
represented by a convex polyhedron in 3-space, each of whose faces corre-
sponds to a specific optimal assignment. It is proved that, even though
there are 2% distinct assignments of n modules over the two processors
and an infinite number of load values, the number of optimal assignments
is 0(n2). A fast look-up technique that, given the polyhedron, finds the
optimal assignment at a specific pair of loads in O(n log n) time is
described. An algorithm that finds the polyhedron in 0(n7) time is presented.

The results presented here provide a means for adapting rapidly to

changes in the load on both machines.

This research was supported by NSF Grant MCS-76-11650, while the author
was at the Department of Electrical and Computer Engineering, University
of Massachusetts, Amherst, and by NASA Contract No. NAS1-141401 while
the author was resident at ICASE, NASA Langley Research Center, Hampton,
VA 23665.

I. Introduction

The potential for distributed processing exists whereve:r :rma= ire
two or more computer systems that are interconnected in such : hruil-.0m
that a program (or subprogram) running on one machine can invors .
different program on another machine. Such situations exist iz

numerous industrial and academic computing environments.

Given the possibility of executing the various modules IbwI mre
up a large program on different processors, we are naturallr Loreoys ed
in doing this in an optimal fashion. Each module should ides.I-
execute on the processor that is best suited to the sort of rrwulicion
that is being carried out by that module. Modules that commurilsiz
heavily with each other should reside, as far as possible, or I} zame
machine. If we associate with each module its execution coszs ot d3¢h
of the available processors, and if the costs of communicatiors N iween
pairs of modules (should they not be coresident) are also giwvexn, et
the problem becomes one of assigning modules to processors such 12&t

the sum of execution and communication costs is minimized.

Stone [77a] has shown that this problem may be solved for the
two-processor case using a network flow algorithm. An extension tv the
three processor case is described by Stone [77b]. Rao et al. [7V]
describe how a memory constraint on one of the processors mav be taken
into account. Bokhari [79] has extended the network flow model to

include the possibility of reassigning modules during the course of

program execution, while taking the costs of reassignment into account.

Further research by Stone [78] shows how the assignments may be found

efficiently under conditions of varying load on only one processor.

This research addresses the problem of finding the optimal
assignments for dual-processor syétems under varying load conditions on
both processors. In the typical industrial or academic environment,
the processors that make up a distributed system are usually
time-shared. In such circumstances, the cost of running a module on a
specific processor depends on the load on that processor. The optimal
assignment of modules to processors is, therefore, sensitive to the
load conditions on the processors. The network flow algorithm may, of
course, be used to find the optimal assignment at a specific pair of
load levels. However, it is usually not feasible to do this in real
time because, even though the algorithm is efficient, the time required
to solve the assignment problem can equal or exceed the time required

to run the program whose execution cost is being minimized.

We present in this paper an algorithm that enables us to compute
efficiently all optimal assignments for all possible values of load in
advance of actual execution of the distributed modular program. A very
fast look-up technique that finds the optimal assignment of all n
modules at specified load conditions in O(n log n) time is also
developed. The results presented here provide a means for adapting

rapidly to changes in the load on the two machines.

This paper is organized as follows. In Section II we show that,

assuming the run costs of modules to vary linearly with the load on the

processors, the cost of optimal assignments at all values of load
correspond to a convex polyhedron in 3-space. In Section III we show
how all the relevant information about the polyhedron is contained in
its projection on the XY plane. The total number of faces on the
polyhedron is proved to be O(nz) in Section IV. In Section V we
develop the concept of critical load lines--these permit us to look up
the optimal assignment at any value of load in O(n log n) time. An
algorithm for finding the polyhedron 1s presented in Section VI. We
conclude with a discussion on implementation considerations and

describe some new problems generated by this research.

II. The Assignment Polyhedron.

In this section we present our assumptions and develop a
mathematical model for our assignment problem. We first briefly review
the network flow algorithm for the solution of the assignment problem
for given load conditions and the extension to the case where the load
on only one processor is variable. We go on to show that, under
assumptions of linearity, the cost of each assignment under varying
load conditions on both processors corresponds to a plane in 3-space
and that the optimal assignments form a convex polyhedron, such that
each face of the polyhedron corresponds to a specific optimal

assignment.

The following is a brief exposition of Stone’s network flow model
[Stone,75]. A distributed program is considered to be a collection of
modules (which may be subroutines, coroutines, or data files). A
module may, in general, execute or reside on either of the two
processors. For each module we are given the cost of executing it on
either processor. For each pair of modules we are given the cost of
interprocessor communication between them, should they not be
coresident. Costs may be measured in time, dollars or other resource

units.

The problem of finding the assignment that minimizes the net cost

is solved by drawing up an assignment graph in which each cut

corresponds to an assignment and the weight of the cut equals the cost

of the assignment. By applying a maxflow algorithm to this graph, we

may obtain the minimum weight cut and hence the minimum cost
assignment. This algorithm gives us the optimal assignment for fixed
values of loads on the two machines. Should the loads change, the
algorithm may be run again with suitably modified values of the
runcosts. This is viable if the loads change after periods of time
that are much longer than the time required to run the algorithm.

Since this is often not the case, we would like to have procedures that
enable us to compute all optimal assigments prior to the execution of
the distributed program and to have means for rapidly looking up the

optimal assignment at a given load level.

This problem has been solved by Stone [78] for the case where the
load on only one machine varies. It has been shown that for increasing
values of load on one machine, successive optimal assignments are
nested and hence the total number of assignments for a problem
involving n modules is no more than n+l. The results presented below
solve the problem for variable loads on both machines and may be

considered to be a two-dimensional extension of the previous research.

Let us label our two processors X and Y. We assume that the load
levels on the two machines may be described by the real positive
numbers x and y respectively. A specific pair of load levels <x,y> is

called a load point and may lie anywhere in the positive XY plane.

The cost of running a module A on processor X is assumed to vary
linearly with the load on X. The constant of proportionality is

denoted a . Thus the cost of running module A on processor X is

a x and, similarly, the cost for running A on Y is ayy.

Note. For clarity of presentation, we have assumed that x and y
vary from 0 to infinity, thereby implying that at load zero each module
executes in zero time. This should create no difficulties in the
implementation of this work because loads will in practice be
constrained to lie between some Xin and X ax and some Yoin
and Ymax® Thus the shortest time in which a module can execute on
processor x would be axxmin>0'

The cost of communication between a pair of nodes, should they not
be coresident, is assumed to be constant over all possible values of
load. This assumption is justified by practical experience with the
Brown University Graphics system [Michel & van Dam 77] where the

network flow algorithm was first implemented.

Consider the cost figures shown in Table I. Here we have a
problem involving 5 modules. The rum costs of each module on each
processor are given as variables in x and y. The communication costs
are for the indicated pair of modules, should they not be coresident.
These costs may be inserted into the assignment graph of Fig. 1, as
described by Stone [77a]. Each cut in this graph corresponds to an
assignment and vice-versa. The weight of each cut equals the cost of
the corresponding assignment. For example, the thick line in Fig. 1
shows a cut that assigns modules 1 & 2 to processor X and the remaining
modules to processor Y. The weight of this cut is Z=12x+16y+16, this

being the sum of the weights on the constituent edges. In general, a

Runcost On Runcost On
Module X Y
1 10x 1ly
2 2x 37y
3 X Sy
4 © 7y
5 4x 4y
x=load on X y=load on Y
Communication Costs
Module 1 2 3 4 5
1 - 3 7 8 0
2 - 0 1 o0
3 - 0 7
4 - 9
5 -

TABLE I. Runcosts and Communication Costs for

a 5 module problem.

Fig. 1 Assignment Graph for the Problem shown in Table I

©

cut will have weight z=Mx+Ny+C, where M(N) equals the sum of run costs
of modules assigned to X(Y). C equals the sum of communication costs

between modules that are not coresident.

Since there is a one-to-one correspondence between cuts and
assignments, we may identify a cut by listing the set of nodes it
assigns to processor X (the remaining nodes must necessarily be

assigned to processor Y). Thus the cut indicated in Fig. 1 is denoted

{1,2).

We will call the equation of the weight of a cut (or assignment)

just the equation of a cut (or assignment) for brevity. Thus the

equation of cut {1,2) is z=12x+16y+16 and the equation of cut {1,2,3,5}
(not marked in the figure) is z=17x+7y+18. The cardinality of a cut or
asgignment is the cardinality of the set of nodes it assigns to

processor X.

The assignment that puts no modules on X is called the Null
assignment, denoted @, and has an equation of the form z=Ny. The
assignment that puts all modules on X is called the Universal

assignment, denoted U, and has an equation of the form z=Mx.

The general equation of a cut z=Mx+Ny+C represents a plane in
3-gpace. Since there are 28 possible assignments for a problem
involving n modules and two processors, we will have 2" such
equations of planes. The constants M,N and C are all non-negative

(because execution and communication costs are all non-negative) and,

-10-

as a result, none of these planes can intersect with the XY plane
within the positive quadrant. Every plane has a non-negative intercept
with the Z-axis (since C>0). The slopes of these planes in the X and Y

directions are also nonnegative (since M,N >0).

We will henceforth call the positive quadrant of the XY plane the
load plane because each point on it represents a load point. At a
given load point <x,y>, the lowermost of the 2" planes (the plane
with the smallest z-coordinate) is the one that represents the optimal
assignment. This may be found by substituting the specific values of x

and y into the assignment graph and applying a network flow algorithm

to it. As we are interested only in optimal arsignments, we need
consider only the lowermost plane at each <x,y>. A little reflection
will reveal that these lowermost planes intersect to form a convex
polyhedron whose faces correspond to specific assignments. We call

this the assignment polyhedron because each face on this polyhedron

represents an assignment that is optimal for all load points <x,y> that
lie within its projection on the XY plane. Fig. 2 shows a typical

assignment polyhedron.

It is clearly not feasible to apply a network flow algorithm at
each point on the load plane in order to find the polyhedron.
Subsequent sections of this paper discuss how the polyhedron may be
found efficiently and also how it may be used to solve our assignment

problem.

-11-

111. The Load Plane.

The assignment polyhedron described in the previous section is
convex. It follows that each individual face is8 a convex polygon and
further that the projection of the polyhedron onto the XY plane (the

load plane) is made up of convex polygons.

The load plane is thus dissected into convex polygonal regions
each of which, having been projected by a face, corresponds to an
assignment that 1is optimal for all load points that fall within it, and
is labelled accordingly. Fig. 3 shows the load plane corresponding to
the polyhedron of Fig. 2, which is derived from a graph having eight

module nodes.

Note. The regions at the extreme right and top of the load plane

are unbounded (see property 3.7 below).

The "nesting" theorem by Stone [78] states that in a distributed
processing situation of the sort being considered here, if the load on
only machine Y increases the optimal assignment will change such that

modules move away from machine Y onto machine X and only in that

direction. In other words, successive optimal assignments are nested.
This is clear from Fig. 3. The vertical dashed line, parallel to the Y
axis, represents an increase in the load on processor Y, while the load
on processor X is maintained at a constant value. fraveling in the
positive Y direction, we encounter regions @, {8}, {7,8), {4,7,8),

{3,4,7,8), {3,4,6,7,8}. The corresponding property holds if we keep

-12-

Fig. 2 3-Dimensional view of an Assignment Polyhedron for a

problem involving 8 modules.

Y A faces have not been labelled.
{1,2,3,4,5,6,7,8} {1,2,3,4,6,7,8} Q, //////,
=U b/\
(%
ny
a, bﬁ”
™ {3,4,7,8}
\l'bﬁ
{4,7,8}
$ /)
A
v”
r:J'i
N {8}
// /
/ {3,498}
‘ o-p

For clarity, some of the

> X

Fig. 3 The Load Plane Corresponding to the Polyhedron in Fig.?2

-13-

the load on Y constant and vary the load on X.

The load plane has the following properties.

3.1

A horizontal or vertical line through the load plane cannot cut
through more than n+l regions (n is the number of modules).

This follows from the nesting theorem.

Each point <x,y> on the load plane falls within a region that
represents an assignment that is equal to or contained in the
assignment at <x-Ax,y+Ay> (Ax,Ay>0) (Fig. 4). This also

follows from the nesting theorem.

The lines defining the regions of the load plane all have
positive slope. This follows from property 3.2. A line with
negative slope cannot separate two regions. For example, in
Fig.5, suppose <x1,y1>,<x3,y3> are contained in

one region and <x2,y2> in another, and a line of

negative slope separates the two regions. Then the assignment
at <x1,y1> must be contained in the assignment at

<x2,y2>, which in ;urn must be contained in

<Kg5¥q>e This is possible only if all three points

belong to the same region. (This property may also be
established using arguments based on the convexity of the

polyhedron and the properties of the equations of the planes.)

‘3.4 Any continuous or piecewise continuous curve that has negative

—14-

Fig. 4. Property 3.2: The assignment at <x,y> must
be equal to or contained in every assignment
in the shaded region

<X3:¥3>

<Xq Y4 >
<x2,y2> 171

Fig. 5 Property 3.3:The line separating two regions cannot
have negative slope.

-15-

slope everywhere along its length must pass through
successively nested regions (Fig. 6). Clearly, this curve

cannot pass through more than n+l regioms.

w
.
w

If we represent each region in the load plane by a node and
draw a directed edge between nodes representing adjacent
regions in the direction of nesting, we obtain a planar
lattice, as shown in Fig. 7. Obviously, no path in this

lattice has length greater than n+l.

The X-axis can be touched only by the @ region for all x>0.

w
.
(=)}

This is because the equation for the ¢ region is z=Ny which
is zero for all y=0 and all other regions have z>0 for y>O0.
Similarly, the Y-axis can be touched only by the U region, for

all y>0.

3.7 The regions for very large values of x and y are all unbounded.

These "fringe" regions include the @ and U regionms.

We may at this point be tempted to conclude that properties 3.1
and 3.2 are sufficient to prove that the total number of regions 1is no
more than nz. While the number of regions will be proved to be
0(n2) in the next section, this does not necessarily follow from
the properties listed above. It is possible to construct "load planes"

having 28 regions that have all the above properties.

We conclude this section by observing that, because there is a

16~

Fig. 6 Property 3.4: Any curve that has negative
slope throughout its length cannot pass through
more than n+l regions.

Fig. 7 Property 3.5:The nesting relationships between
regions form a planar lattice.

one~-to-one correspondence between regions on the load plane and the
faces on the polyhedron, the properties listed above apply in an

obvious fashion to the polyhedrom itself.

~18-

IV. The Maximum Number of Distinct Assignments.

In this section we show that the maximum number of regions on the
load plane (and hence the number of faces on the polyhedron) is

0(n2). We introduce the concept of elemental polyhedra, these

being polyhedra whose intersection is the assignment polyhedron and
whose properties permit us to obtain the bound on the number of regions

on the load plane.

Let us consider an assignment graph of the type shown in Fig. 1,
and concentrate our attention on two cuts A and B such that A¢B and
B¥A. We can condense our graph into four "Supernodes" X’, Y’, A" and
B’, where X*(Y’) represents the processor node X(Y) plus all nodes
assigned to X(Y) by both A and B (Fig. 8). Supernode A° represents all
nodes assigned to X by A and to Y by B. Similarly, B’ represents all
nodes assigned to X by B and to Y by A. The edges between the
supernodes have weights equal to the sum of the weights on the edges

between the constituent nodes.

There are four possible cuts in this graph: the cuts A and B
described above; the cut @ which represents the assignment of nodes
ANnB to X; and the cut U which represents the assignment of nodes AuB

to X.

The polyhedron generated by these four cuts is called an elemental
polyhedron. It should be clear that each pair of cuts A,B (A¢B,B ¢A)

in an assignment graph will give rise to an elemental polyhedron. The

-19-

Fig. 8 A condensed Graph

Fig. 9 The elemental load plane

-20~

assignment polyhedron corresponding to a particular graph is made up of
the intersection of all the elemental polyhedra generated by all pairs
of cuts. The load plane corresponding to an elemental polyhedron is

called an elemental load plane (Fig. 9).

Note. The elemental load plane shown in Fig. 9 has the maximum
number of regions on it (that is, four). This 1s not always the case
and some elemental load planes may have either A or B or both missing.
In the condensed graph, the equation of the assignment U(@#) does not
have the form z=Mx (z=Ny). This is because each edge is a condensatiomn

of several edges from the original graph and thus its weight is the sum

of several communication and execution costs. For this reason the
elemental load plane does not obey property 3.6--the X and Y axes may

be touched by two regions each.

The faces corresponding to A and B can have at most one point in
common (that is, they can at most touch at a point). They can never
share a common edge because A$B and B¢A by definition. Thus we see
that the region U= AUB will always be to the left of and above the
regions A and B. Similarly the region ¢ = ANB will always be to the

right of and below A and B. This may formally be stated as follows.

4.1 In the elemental load plane every point in the region AU B may
be connected by a straight line to some point in region A(B)
such that the straight line does not pass through region B(A).

The same applies to region AN B.

This excessively formal way of stating an obvious fact is,
unfortunately, essential to the proof that follows. As the assignment
polyhedron is made up of the intersection of elemental polyhedra, it
follows that the abovementioned property of the elemental load plane
must carry over to the load plane corresponding to the complete

assignment polyhedron. This permits us to prove the following theorem:

Theorem 4.2. The number of regions (faces) on the load plane

(assignment polyhedron) is 0(n2).

Proof. The maximum number of regions of cardinality 1 is n. For
the case n=6 this is shown in Fig. 10, where the number of
faces of cardinality 2 is n-1=5. Any further regions of
cardinality 2 must lie in the shaded regions so as not to
violate property 3.2, but this would cause property 4.1 to be
violated. It follows that there cannot be greater than n-l
regions of cardinality 2. Similarly the number of regions of

cardinality 3 cannot exceed n-3, and so on. Thus the total

number of regions is n(n+l)/2 + 1. This proves the theorem.

Corollary 4.3. The number of straight line segments (edges) on the

load plane (assignment polyhedron) is O(nz).

Proof. Follows from Theorem 4.2 and a result by Euler[1752]: On a
polyhedron in 3-space the number of edges plus six canmnot

exceed three times the number of faces.

-22-

The maximum number of regions

Fig. 10

~23-

There are several other properties of the assignment polyhedron
that can be established and shown to reduce the total number of regions
further. However these properties do not reduce the polynomial bound

on the number of regions below n2 and are therefore ignored here.

-24-

V. Critical Load Lines.

Given the load plane described above, we obviously need some means
for utilizing it in our assignment problem. 1In this section we present
an efficient technique for finding the assignment of all modules of the

program, given the load point.

Let us examine the load plane shown in Fig. 11, concentrating our
attention om module 3. We observe that the load plane may be divided
into two super regions such that if the load point is in one regionm,
module 3 is assigned to processor X and if in the other, it is assigned
to processor Y. In Fig. 11, the super region comprising regions {3},
{2,3}, (3,4}, {(2,3,4}, {3,4,5}, etc. 18 the one for which module 3 is
assigned to processor X. Clearly, one such division of the load plane

exists for each module. This leads to the following concept.

Definition. The critical load line for a module is a piecewise

continuous line on the load plane such that if the load point falls to
the right of (or below) this line, the optimal assignment will assign
that module to processor Y. If the load point falls to the left of (or
above) this line, the module is assigned to processor X by the optimal

assignment.

The thick line shown in Fig. 11 is the critical load line for

module 3.

The following properties of the critical load line may be

-25-

Fig. 11 Critical load line for module 3.

-26~-

enumerated.

5.1 A critical load line starts at the origin and continues

w

w

W

wn

indefinitely.

Each segment of a critical load line is a straight line with

positive slope. (Negative slopes would violate the nesting

property).

The y-coordinate of the critical load line increases

monotonically with the x-coordinate (follows from 5.2).

Every critical load line has O(n2) segments. This follows

from corollary 4.3: the number of segments in a critical load
line is surely less than the total number of segments on the

entire load plane.

At least two critical load lines pass through the point of
intersection of 3 regions on the load planme (Fig. 12). This
point of intersection is, in fact, a vertex of the assignment

polyhedron.

The set of n critical load lines, one for each module,
completely specifies the load plane. If the z coordinate is
included at each breakpoint of each critical load line, then
the set of critical load lines completely specifies the

assignment polyhedron.

-27~

Critical load
line for module 3

Critical 1oad
Tine for module
2

Fig 12. At least two critical load lines pass through
a point of intersection of three regions.

-28-

The critical load line associated with a particular module may be
used to find the optimal assignment for that module for a given load
point. Suppose we are given a critical load line (Fig. 13) specified
by the end points of its segments. Then we may determine whether a

load point <x;,¥,> lies above or below the line as follows.

1. Divide the load plane into vertical strips as determined by the

end points of the segments of the critical load line.

2. Determine which strip the x coordinate of the point
<xy5Y,> lies in. Since the y coordinate of a critical
load line increases monotonically with x (property 5.3), we may

use a binary search at this step.

3. Determine whether the y coordinate lies above or below the

segment within the strip found in step 2.

The number of segments being 0(n2), the search in step 2 can
be done in O(log n) time. Step 3 takes constant time. The
determination of the optimal assignment for all n modules will thus

take O(n log n) time.

-29~

XpYy?

Fig. 13

*1
Determining whether a point <x;
given critical load line.

,y1>1ies above or below a

-30-

VI. An Algorithm for finding the Assignment Polyhedron.

The algorithm described in this section will accept the assignment
graph and the minimum and maximum values of loads x and y and will find
all critical load lines in 0(n4) appplications of the maxflow

algorithm.

We assume, for purposes of exposition, that the following data

structures, functions and procedures are available to us.

Function MAXFLOW(xX,y:real):nodeset; Will substitute the values x and y
in the given assignment graph, apply a maxflow algorithm to it, obtain
the mincut and return the set of nodes assigned by this mincut to
processor X. Recall that this set of nodes uniquely specifies an
assignment and that the equation of the plane corresponding to this

cutset can be obtained from the assignment graph.

Data Structure PAIRLIST; will maintain a list of pairs of adjacent
faces on the polyhedron that have been examined so far by the

algorithm.

Procedure INSERT PAIR (A,B:nodeset); will imsert the pair of

assignments A,B into PAIRLIST.

Function IN_PAIRLIST(A,B:nodeset):boolean; returns tfue if A and B are

already on PAIRLIST.

-31-

Function LOWEST_ PLANE(A,B:nodeset):nodeset; This function will find
the line of intersection of planes A and B and establish the highest
point on this line that is on the hull. It will return the ideztity of
the plane that intersects with A and B at this point (that being the
lowest plane intersecting this line). It first finds the furthest
point on the line of intersection of A and B that is within the region
defined by Xoax and Ymax® It then finds the mincut C at this

point. The point of intersection of A,B and C is then considered the
new furthest point and the process repeated until C=A or C=B, whereupon
C i8 returned as the lowest plane. Fig. 14 shows a view of this

process in terms of its projection on the load plane.

Data Structure CRITICAL LINES. The n critical lines will be stored in
this structure. During the progress of the algorithm points that lie
on specific critical load lines will be inserted into the structure

using the following procedure.

Procedure INSERT_CRITICAL(A,B,C:nodeset); The input to this procedure
are the 3 planes A,B,C which intersect to form a vertex of the hull.
The procedure finds the x,y and z coordinates of the point of
intersection and inserts this information into the data structure

CRITICAL_LINES.

In addition, we have a stack that holds nodesets and the usual

functions, push, pop and empty.

-32~

yma X

Fig 14. Determining the lowest plane, C, that intersects with the
1ine of intersection of A and B. In this example the
algorithm applies the maxflow routine four times before
locating the point of intersection of A, B and C.

-33-

The Algorithm
begin

Input the assignment graph, Xiin’ *max’ Ymin?® Ymax?
A:=mincut(xmax,ymin);

B:=mincut(x , ,y .)}
push(A);
push(B);
while not empty do
begin
pop(A);
pop (B);
INSERT PAIR(A,B);
C:=LOWEST_PLANE(A,B);
INSERT_CRIT(A,B,C);
if not IN_PAIRLIST(A,C) then
begin
push(A);
push(C)
end;
if not IN_PAIRLIST(B,C) then
begin
push(B);
push(C)
end;
end;
output critical lines;

end.

~34-

The algorithm looks at each pair of adjacent faces om the
polyhedron once. It executes the function LOWEST_PLANE once for every
such pair. The number of adjacent pairs of faces on the polyhedron
equals the total number of edges, which is O(nz). Each call to
LOWEST PLANE will result in a number of executions of the maxflow
algorithm. This cannot be greater than the total number of regions on
the plane, which is O(nz)- Thus the total number of applications
of the maxflow algorithm is 0(n4)- The complexity of the best
maxflow algorithm being 0(n3) [Karzanov 74], the overall time

complexity of the polyhedron finding algorithm is O(n7).

=35~

VII. Discussion and Conclusions.

We have presented a mathematical model for the problem of
computing all optimal assignments for the dual processor assignment
problem under varying loéd conditions on both processors. We have
shown that the situation can be modelled by a convex polyhedron in
3~space in which each face corresponds to a specific optimal
assignment. The total number of faces and hence the total number of
distinct optimal assignments was proved to be 0(n2). A fast lookup
technique for finding the optimal assignment in O(n log n) time was
developed. The last section presented an algorithm to find the

polyhedron in 0(n7) time.

The viability of using network flow algorithms for finding optimal
assignments in a practical environment has been established by the
Brown University Graphics System [Michel & van Dam 76], [van Dam et al.
74]. Stone’s basic assignment algorithm and the nesting property have
both been used to advantage in that system. The algorithm presented in
this paper extends previous results to the case where varying loads on
both machines can be taken into account and is thus applicable to more

general situations.

The algorithm for finding the polyhedron, which was described in
the previous section, has been implemented and tested on about 100
random graphs with 10 to 20 nodes each. The polyhedron shown in Fig. 2
and the load plane of Fig. 3 were both plotted directly by this

algorithm.

-36-

| Among the open problems generated by this research are the

following.

1. How may this approach be extended to three processors? Anm
algorithm for the basic 3-processor assignment problem has been
developed by Stone [77b]. Can the nesting properties described
in this paper be extended in some way to the three processor

case?

2. We have assumed that as the load changes, relocations may be
carried out without penalty. What if relocations take an
appreciable amount of time? Bokhari [79] describes an
extension of the network flow algorithm that takes reassignment
costs into account. Can this be extended to the variable load

case?

VIII. Acknowledgements

During the course of this research, it has been my pleasure to
interact fruitfully with numerous colleagues and mentors. I am
especially grateful to Professor Harold Stone for his encouragement of

this research and for numerous stimulating discussions on various

aspects of the problem. I am also grateful to Azmi Jafarey for

developing counterexamples to some early conjectures about the

-37-

polyhedron. Discussions with Drs. Milton E. Rose, Robert G. Voigt,
J. Gopal Danaraj and Tom Anderson have been very helpful to me in this

research.

-38-

IX. References

Bokhari [79] S. H. Bokhari, "Dual Processor Scheduling with Dynamic

Reassignment," IEEE Trans. Software Eng., July 1979, to

appear.

Euler [1752) Leonhard Euler, "Elementa Doctrinae Solidorum," Novi

commentarii academiae scientiarium Petropolitanae, 4

(1752/3), pp- 109-140. Available in Leonhardi Euleri Opera

Omina, Series 1, vol. 26: Commentationes Geometricae, pp-.

71-93, Lausanne, 1953.

Karzanov [74] A. V. Karzanov,'Determining the Maximal Flow in a

Network by the Method of Preflows,'" Soviet Math. Doklady,

vol. 15, no. 2, pp. 434-437, 1974.

Michel & van Dam [76] J. Michel and A. van Dam, "Experience with
Distributed Processing on a Host/Satellite Graphics System,"

Proceeings of SIGGRAPH ‘76, available as Computer Graphics

(SIGGRAPH newsletter), vol. 10, no. 2, 1976.

Michel & van Dam [77]) J. Michel & A. van Dam, personal communication.

Rao et al. ([79] G. S. Rao, H. S. Stone and T. C. Hu,"Assignment of

Tasks in a Distributed Processor System with Limited Memory,"

IEEE Trans. Computers, vol. C-28, no. 4, pp. 291-299,

April 1979.

-39-

Stone [77a] H. S. Stone, "Multiprocessor Scheduling with the Aid of

Network Flow Algorithms," IEEE Trans. Software Eng., vol.

SE-3, no. 1, pp. 85-93, Jan. 1977.

Stone [77b] H. S. Stone, "Program Assignment in Three-Processor
Systems and Tricutset Partitioning of Graphs,” Tech. Rep.
no. ECE-CS-77-7, Dept. of Elec & Computer Eng., Univ. of

Massachusetts, Amherst.

Stone [78]) H. S. Stone, '"Critical Load Factors in Distributed

Systems," IEEE Trans. Software Eng., vol SE-4, no. 3, pp.

254-258, May 1978.

van Dam et al. [74] A. van Dam, G. Stabler, and R. Harrington,
"Intelligent Satellites for Interactive Graphics," Proc. of

the IEEE, vol. 62, no. &, pp. 83-92, April 1974.

